NONMEM Users Guide VI - PREDPP Figures
Figure_1 PK subroutine for phenobarb population data: typical values returned
Figure_2 PK subroutine for phenobarb population data: illustrating data simulation
Figure_3 PK subroutine for phenobarb population data: subject-specific values returned
Figure_4 Scatterplot of fit to phenobarb data without using weight
Figure_5 PK subroutine for phenobarab population data: using a mixture model
Figure_6 MIX subroutine
Figure_7 PK subroutine for single-subject data
Figure_8 PK subroutine for single-subject PD data
Figure_9 ERROR subroutine for phenobarb population data
Figure_10 ERROR subroutine for phenobarb population data: illustrating data simulation
Figure_11 ERROR subroutine for single-subject data
Figure_12 ERROR subroutine for single-subject data: illustrating data simulation
Figure_13 ERROR subroutine for single-subject PD data
Figure_14 ERROR subroutine for single-subject PD data: illustrating ERROR-defined items
Figure_15 First three individual records from phenobarb population data
Figure_16 Control stream for phenobarb population data
Figure_17 NM-TRAN control stream for phenobarb population data
Figure_18 NONMEM problem summary for phenobarb population data
Figure_19 PREDPP problem summary for phenobarb population data
Figure_20 Control stream for phenobarb population data: posthoc eta’s displayed
Figure_21 NM-TRAN control stream for phenobarb population data: posthoc eta’s displayed
Figure_22 Control stream for phenobarb population data: using a mixture model
Figure_23 NM-TRAN control stream for phenobarb population data: using a mixture model
Figure_24 Scatterplot of mixture subpopulation versus weight
Figure_25 Control stream of single-subject data
Figure_26 NM-TRAN control stream of single-subject data
Figure_27 NONMEM problem summary for single-subject data
Figure_28 PREDPP problem summary for single-subject data
Figure_29 Control stream of single-subject PD data
Figure_30 NM-TRAN control stream of single-subject PD data
Figure_31 Control stream of single-subject PD data: ERROR-defined items displayed
Figure_32 NM-TRAN control stream of single-subject PD data: ERROR-defined items displayed
Figure_33 Scatterplot of prediction versus effect-compt. concentration
Figure_34 Scatterplot of effect-compt. concentration versus plasma concentration
Figure_35 Scatterplot of plasma concentration versus time
Figure_36 Scatterplot of effect concentration versus time
Figure_37 INFN subroutine for computing linearly interpolated values
Figure_38 MODEL subroutine for 1-compt. linear model with 1st-order absorption
Figure_39 MODEL subroutine for single-subject PD data
Figure_40 DES subroutine for 1-compt. linear model with 1st-order absorption
Figure_41 TOL subroutine
Figure_42 AES subroutine
Figure_43 MODEL subroutine for use with the AES subroutine

NONMEM Users Guide VI - PREDPP Figures

Figure_1 PK subroutine for phenobarb population data: typical values returned

C PK SUBROUTINE FOR THE PHENOBARB POPULATION DATA
C TYPICAL VALUES RETURNED
C USED WITH ADVAN1 AND TRANS2
C CLEARANCE AND VOLUME PROPORTIONAL TO WEIGHT
C PROPORTIONALITY CONSTANT FOR VOLUME DEPENDS ON APGAR
C
      SUBROUTINE PK (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,IRGG,GG,NETAS)
      DIMENSION IDEF(7,*),THETA(*),EVTREC(IREV,*),INDXS(*),GG(IRGG,*)
      DOUBLE PRECISION THETA,GG
      DOUBLE PRECISION TVCL,TVVD
      IF (ICALL.GT.1) GO TO 1000
C SET UP IDEF ARRAY:
      IDEF(1,1)=-9
C ROW INDEX OF SCALING PARAMETER
      IDEF(3,1)=3
C CALL PK ONCE PER INDIV. REC.
      IDEF(1,2)=1
      RETURN
 1000 CONTINUE
C REGULAR CALLS TO PK:
C WEIGHT
      WT=EVTREC(1,4)
C APGAR
      APGR=EVTREC(1,5)
C CLEARANCE
      TVCL=THETA(1)*WT
      GG(1,1)=TVCL
      GG(1,2)=TVCL
C VOLUME
      TVVD=THETA(2)*WT
      IF (APGR.LE.2) TVVD=THETA(3)*TVVD
      GG(2,1)=TVVD
      GG(2,3)=TVVD
C SCALING
      GG(3,1)=TVVD
      GG(3,3)=TVVD
      RETURN
      END

Figure_2 PK subroutine for phenobarb population data: illustrating data simulation

C PK SUBROUTINE FOR THE PHENOBARB POPULATION DATA
C ILLUSTRATING DATA SIMULATION
C USED WITH ADVAN1 AND TRANS2
C CLEARANCE AND VOLUME PROPORTIONAL TO WEIGHT
C PROPORTIONALITY CONSTANT FOR VOLUME DEPENDS ON APGAR
C
      SUBROUTINE PK (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,IRGG,GG,NETAS)
      DIMENSION IDEF(7,*),THETA(*),EVTREC(IREV,*),INDXS(*),GG(IRGG,*)
      DIMENSION ETA(2)
      DOUBLE PRECISION THETA,GG,ETA
      DOUBLE PRECISION TVCL,TVVD,CL,VD
      IF (ICALL.GT.1) GO TO 1000
C SET UP IDEF ARRAY:
      IDEF(1,1)=-9
C ROW INDEX OF SCALING PARAMETER
      IDEF(3,1)=3
C CALL PK ONCE PER INDIV. REC.
      IDEF(1,2)=1
      RETURN
 1000 CONTINUE
C REGULAR CALLS TO PK:
C WEIGHT
      WT=EVTREC(1,4)
C APGAR
      APGR=EVTREC(1,5)
      IF (ICALL.EQ.4) GO TO 2000
C DATA ANALYTIC CALL:
C CLEARANCE
      TVCL=THETA(1)*WT
      GG(1,1)=TVCL
      GG(1,2)=TVCL
C VOLUME
      TVVD=THETA(2)*WT
      IF (APGR.LE.2) TVVD=THETA(3)*TVVD
      GG(2,1)=TVVD
      GG(2,3)=TVVD
C SCALING
      GG(3,1)=TVVD
      GG(3,3)=TVVD
      RETURN
 2000 CONTINUE
C SIMULATION CALL:
      CALL SIMETA (ETA)
C CLEARANCE
      CL=THETA(1)*WT*EXP(ETA(1))
      GG(1,1)=CL
C VOLUME
      EVTREC(1,6)=1
      VD=THETA(2)*WT*EXP(ETA(2))
      IF (APGR.LE.2) THEN
         EVTREC(1,6)=2
         VD=THETA(3)*VD
      ENDIF
      GG(2,1)=VD
C SCALING
      GG(3,1)=VD
      RETURN
      END

Figure_3 PK subroutine for phenobarb population data: subject-specific values returned

C PK SUBROUTINE FOR THE PHENOBARB POPULATION DATA
C SUBJECT-SPECIFIC VALUES RETURNED
C USED WITH ADVAN1 AND TRANS2
C CLEARANCE AND VOLUME PROPORTIONAL TO WEIGHT
C PROPORTIONALITY CONSTANT FOR VOLUME DEPENDS ON APGAR
C
      SUBROUTINE PK (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,IRGG,GG,NETAS)
      DIMENSION IDEF(7,*),THETA(*),EVTREC(IREV,*),INDXS(*),GG(IRGG,*)
      DIMENSION ETA(2)
      DOUBLE PRECISION THETA,GG,ETA
      DOUBLE PRECISION CL,VD
      IF (ICALL.GT.1) GO TO 1000
C SET UP IDEF ARRAY:
      IDEF(1,1)=-9
C ROW INDEX OF SCALING PARAMETER
      IDEF(3,1)=3
C CALL PK ONCE PER INDIV. REC.
      IDEF(1,2)=1
C INITIALIZE GETETA
      CALL GETETA (ETA)
      RETURN
 1000 CONTINUE
C REGULAR CALLS TO PK:
C WEIGHT
      WT=EVTREC(1,4)
C APGAR
      APGR=EVTREC(1,5)
C GETETA
      CALL GETETA (ETA)
C CLEARANCE
      CL=THETA(1)*WT*EXP(ETA(1))
      GG(1,1)=CL
      GG(1,2)=CL
C VOLUME
      VD=THETA(2)*WT*EXP(ETA(2))
      IF (APGR.LE.2) VD=THETA(3)*VD
      GG(2,1)=VD
      GG(2,3)=VD
C SCALING
      GG(3,1)=VD
      GG(3,3)=VD
      RETURN
      END

Figure_4 Scatterplot of fit to phenobarb data without using weight

See figure in file fig4.pdf

Figure_5 PK subroutine for phenobarab population data: using a mixture model

C PK SUBROUTINE FOR THE PHENOBARB POPULATION DATA
C SUBJECT-SPECIFIC VALUES RETURNED        MIXTURE MODEL
C USED WITH ADVAN1 AND TRANS2
C
      SUBROUTINE PK (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,IRGG,GG,NETAS)
      DIMENSION IDEF(7,*),THETA(*),EVTREC(IREV,*),INDXS(*),GG(IRGG,*)
      COMMON /ROCM11/ MIXNUM,MIXEST
      COMMON /NMPRD4/ EST
      DIMENSION ETA(4)
      DOUBLE PRECISION THETA,GG,ETA
      DOUBLE PRECISION CL,VD,EST
      IF (ICALL.GT.1) GO TO 1000
C SET UP IDEF ARRAY:
      IDEF(1,1)=-9
C ROW INDEX OF SCALING PARAMETER
      IDEF(3,1)=3
C CALL PK ONCE PER INDIV. REC.
      IDEF(1,2)=1
C INITIALIZE GETETA
      CALL GETETA (ETA)
      RETURN
 1000 CONTINUE
C REGULAR CALLS TO PK:
C GETETA
      CALL GETETA (ETA)
C MIXTURE MIXNUM ESTIMATE
      EST=MIXEST
C CLEARANCE
      IF (MIXNUM.EQ.1) THEN
         CL=THETA(1)*EXP(ETA(1))
         GG(1,1)=CL
         GG(1,2)=CL
      ELSE
         CL=THETA(2)*THETA(1)*EXP(ETA(3))
         GG(1,1)=CL
         GG(1,4)=CL
      ENDIF
C VOLUME
      IF (MIXNUM.EQ.1) THEN
         VD=THETA(3)*EXP(ETA(2))
         GG(2,1)=VD
         GG(2,3)=VD
      ELSE
         VD=THETA(4)*THETA(3)*EXP(ETA(4))
         GG(2,1)=VD
         GG(2,5)=VD
      ENDIF
C SCALING
      GG(3,1)=VD
      IF (MIXNUM.EQ.1) THEN
         GG(3,3)=VD
      ELSE
         GG(3,5)=VD
      ENDIF
      RETURN
      END

Figure_6 MIX subroutine

      SUBROUTINE MIX (ICALL,NSPOP,P)
      COMMON /ROCM0/ THETA(20)
      DIMENSION P(*)
      DOUBLE PRECISION P,THETA
      P(1)=THETA(5)
      P(2)=1.-THETA(5)
      NSPOP=2
      RETURN
      END

Figure_7 PK subroutine for single-subject data

C PK SUBROUTINE FOR SINGLE-SUBJECT DATA
C USED WITH ADVAN2 AND TRANS1
C
      SUBROUTINE PK (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,IRGG,GG,NETAS)
      DIMENSION IDEF(7,*),THETA(*),EVTREC(IREV,*),INDXS(*),GG(IRGG,*)
      DOUBLE PRECISION THETA,GG
      IF (ICALL.GT.1) GO TO 1000
C SET UP IDEF ARRAY:
      IDEF(1,1)=-9
C ROW INDEX FOR SCALING PARAMETER FOR COMPT. 2
      IDEF(3,2)=4
C CALL PK ONCE PER INDIV. REC.
      IDEF(1,2)=1
      RETURN
 1000 CONTINUE
C REGULAR CALL TO PK:
C ELIMINATION RATE CONSTANT
      GG(1,1)=THETA(2)
C ABSORPTION RATE CONSTANT
      GG(3,1)=THETA(1)
C SCALING
      GG(4,1)=THETA(3)
      RETURN
      END

Figure_8 PK subroutine for single-subject PD data

C PK ROUTINE FOR SINGLE-SUBJECT PHARMACODYNAMIC DATA
C USED WITH ADVAN7 AND TRANS1
C
      SUBROUTINE PK (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,IRGG,GG,NETAS)
      DIMENSION IDEF(7,*),THETA(*),EVTREC(IREV,*),INDXS(*),GG(IRGG,*)
      DOUBLE PRECISION THETA,GG
      DOUBLE PRECISION K12,K20,K23,K30,VD,VE
      IF (ICALL.GT.1) GO TO 1000
C SET UP IDEF ARRAY:
      IDEF(1,1)=-9
C ROW INDEX OF SCALING PARAMETER
      IDEF(3,3)=5
C CALL PK ONCE PER INDIV. REC.
      IDEF(1,2)=1
      RETURN
 1000 CONTINUE
C REGULAR CALLS TO PK:
C K12
      K12=1.94
      GG(1,1)=K12
C K20
      K20=.102
      GG(2,1)=K20
C K23
      K23=.001*K20
      GG(3,1)=K23
C K30 (KEO)
      K30=THETA(1)
      GG(4,1)=K30
C SCALING
      VD=32
      VE=VD*K23/K30
      GG(5,1)=VE
      RETURN
      END

Figure_9 ERROR subroutine for phenobarb population data

C ERROR SUBROUTINE FOR THE PHENOBARB POPULATION DATA
C EXPONENTIAL ERROR MODEL
C
      SUBROUTINE ERROR (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,F,G,HH)
      DIMENSION IDEF(*),THETA(*),EVTREC(IREV,*),INDXS(*),G(*),HH(*)
      DOUBLE PRECISION THETA,F,G,HH
      HH(1)=F
      RETURN
      END

Figure_10 ERROR subroutine for phenobarb population data: illustrating data simulation

C ERROR ROUTINE FOR THE PHENOBARB POPULATION DATA
C ILLUSTRATING DATA SIMULATION
C EXPONENTIAL ERROR MODEL
C
      SUBROUTINE ERROR (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,F,G,HH)
      DIMENSION IDEF(*),THETA(*),EVTREC(IREV,*),INDXS(*),G(*),HH(*)
      DIMENSION EPS(1)
      DOUBLE PRECISION THETA,F,G,HH,EPS
      IF (ICALL.EQ.2) HH(1)=F
      IF (ICALL.EQ.4) THEN
         CALL SIMEPS (EPS)
         F=F*EXP(EPS(1))
      ENDIF
      RETURN
      END

Figure_11 ERROR subroutine for single-subject data

C ERROR ROUTINE FOR SINGLE-SUBJECT DATA
C ADDITIVE ERROR MODEL
C
      SUBROUTINE ERROR (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,F,G,HH)
      DIMENSION IDEF(*),THETA(*),EVTREC(IREV,*),INDXS(*),G(*),HH(*)
      DOUBLE PRECISION THETA,F,G,HH
C CALL ERROR ONLY ONCE
      IDEF(2)=2
      HH(1)=1.
      RETURN
      END

Figure_12 ERROR subroutine for single-subject data: illustrating data simulation

C ERROR ROUTINE FOR SINGLE-SUBJECT DATA
C ILLUSTRATING DATA SIMULATION
C ADDITIVE ERROR MODEL
C
      SUBROUTINE ERROR (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,F,G,HH)
      DIMENSION IDEF(*),THETA(*),EVTREC(IREV,*),INDXS(*),G(*),HH(*)
      DIMENSION ETA(1)
      DOUBLE PRECISION THETA,F,G,HH,ETA
      IF (ICALL.EQ.4) THEN
         CALL SIMETA (ETA)
         F=F+ETA(1)
         RETURN
      ENDIF
C CALL ERROR ONLY ONCE FOR DATA ANALYSIS
      IDEF(2)=2
      HH(1)=1.
      RETURN
      END

Figure_13 ERROR subroutine for single-subject PD data

C ERROR ROUTINE FOR SINGLE-SUBJECT PHARMACODYNAMIC DATA
C CONSTANT CV ERROR MODEL
C
      SUBROUTINE ERROR (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,F,G,HH)
      DIMENSION IDEF(*),THETA(*),EVTREC(IREV,*),INDXS(*),G(*),HH(*)
      DOUBLE PRECISION THETA,F,G,HH
      DOUBLE PRECISION EMAX,C50,E
      IF (ICALL.EQ.1) RETURN
C EMAX
      EMAX=THETA(2)
C C50
      C50=THETA(3)
C EFFECT
      E=EMAX*F/(F+C50)
      F=E
C CONSTANT CV ERROR MODEL
      HH(1)=F
      RETURN
      END

Figure_14 ERROR subroutine for single-subject PD data: illustrating ERROR-defined items

C ERROR ROUTINE FOR SINGLE-SUBJECT PHARMACODYNAMIC DATA
C ILLUSTRATING ERROR-DEFINED ITEMS
C CONSTANT CV ERROR MODEL
C
      SUBROUTINE ERROR (ICALL,IDEF,THETA,IREV,EVTREC,N,INDXS,F,G,HH)
      DIMENSION IDEF(*),THETA(*),EVTREC(IREV,*),INDXS(*),G(*),HH(*)
      DOUBLE PRECISION THETA,F,G,HH
      DOUBLE PRECISION EMAX,C50,E,CE,A,CP
      COMMON /NMPRD4/ CP,CE
      COMMON /PROCM4/ A(3)
      IF (ICALL.EQ.1) RETURN
C CP AND CE
      CP=A(2)/32.
      CE=F
C EMAX
      EMAX=THETA(2)
C C50
      C50=THETA(3)
C EFFECT
      E=EMAX*F/(F+C50)
      F=E
C CONSTANT CV ERROR MODEL
      HH(1)=F
      RETURN
      END

Figure_15 First three individual records from phenobarb population data

      1    0.    25.0    1.4      7             1 1
      1    2.0           1.4      7   17.3      0 0
      1   12.5    3.5    1.4      7             1 1
      1   24.5    3.5    1.4      7             1 1
      1   37.0    3.5    1.4      7             1 1
      1   48.0    3.5    1.4      7             1 1
      1   60.5    3.5    1.4      7             1 1
      1   72.5    3.5    1.4      7             1 1
      1   85.3    3.5    1.4      7             1 1
      1   96.5    3.5    1.4      7             1 1
      1  108.5    3.5    1.4      7             1 1
      1  112.5           1.4      7   31.0      0 0
      2    0.    15.0    1.5      9             1 1
      2    2.0           1.5      9    9.7      0 0
      2    4.0    3.8    1.5      9             1 1
      2   16.0    3.8    1.5      9             1 1
      2   27.8    3.8    1.5      9             1 1
      2   40.0    3.8    1.5      9             1 1
      2   52.0    3.8    1.5      9             1 1
      2   63.5           1.5      9   24.6      0 0
      2   64.0    3.8    1.5      9             1 1
      2   76.0    3.8    1.5      9             1 1
      2   88.0    3.8    1.5      9             1 1
      2  100.0    3.8    1.5      9             1 1
      2  112.0    3.8    1.5      9             1 1
      2  124.0    3.8    1.5      9             1 1
      2  135.5           1.5      9   33.0      0 0
      3    0.    30.0    1.5      6             1 1
      3    1.5           1.5      6   18.0      0 0
      3   11.5    3.7    1.5      6             1 1
      3   23.5    3.7    1.5      6             1 1
      3   35.5    3.7    1.5      6             1 1
      3   47.5    3.7    1.5      6             1 1
      3   59.3    3.7    1.5      6             1 1
      3   73.0    3.7    1.5      6             1 1
      3   83.5           1.5      6   23.8      0 0
      3   84.0    3.7    1.5      6             1 1
      3   96.5    3.7    1.5      6             1 1
      3  108.5    3.7    1.5      6             1 1
      3  120.0    3.7    1.5      6             1 1
      3  132.0    3.7    1.5      6             1 1
      3  134.3           1.5      6   24.3      0 0

Figure_16 Control stream for phenobarb population data

FILE    FILESTREAM
PROB    PHENOBARB POPULATION DATA
DATA       1   0   0   8
ITEM       1   6   8  11   1
INDX       7   2   3
LABL      ID    TIME     AMT      WT    APGR      CP    EVID     MDV
FORM
(7F7.0,1X,F1.0)
STRC       3   2   1           1   0   1
THCN       1
THTA       .0047     .99     1.0
LOWR           0       0       0
UPPR    +1000000+1000000+1000000
DIAG    .05     .03
DIAG    .02
ESTM       0 500   3   5
COVR       0
TABL       0   1
TABL       5   1   0   2   0   3   0   4   0   5   0
SCAT       0   7
SCAT       9   6   0   0   0   1
SCAT       9  10
SCAT       4  10
SCAT       5  10
SCAT       9  11
SCAT       4  11
SCAT       5  11

Figure_17 NM-TRAN control stream for phenobarb population data

$PROB    PHENOBARB POPULATION DATA
$DATA  DATA1 (6F7.0)
$INPUT  ID TIME AMT WT APGR CP=DV
$SUBROUTINES ADVAN1 TRANS2
$PK
;CLEARANCE AND VOLUME PROPORTIONAL TO WEIGHT
;PROPORTIONALITY CONSTANT FOR VOLUME DEPENDS ON APGAR
      CALLFL=1
      CL=THETA(1)*WT*EXP(ETA(1))
      TVVD=THETA(2)*WT
      IF (APGR.LE.2) TVVD=THETA(3)*TVVD
      V=TVVD*EXP(ETA(2))
      S1=V
$ERROR
      Y=F*EXP(EPS(1))
$THETA   (0,.0047)  (0,.99)  (0,1.0)
$OMEGA  .05  .03
$SIGMA  .02
$ESTIM   MAXEVAL=500   PRINT=5
$COVAR
$TABLE  ID TIME AMT WT APGR
$SCAT  CP VS PRED   UNIT
$SCAT  RES VS PRED
$SCAT  RES VS WT
$SCAT  RES VS APGR
$SCAT  WRES VS PRED
$SCAT  WRES VS WT
$SCAT  WRES VS APGR

Figure_18 NONMEM problem summary for phenobarb population data

NONLINEAR MIXED EFFECTS MODEL PROGRAM (NONMEM)    DOUBLE PRECISION NONMEM    VERSION IV LEVEL 1.0
DEVELOPED AND PROGRAMMED BY STUART BEAL AND LEWIS SHEINER

PROBLEM NO.  1
PHENOBARB POPULATION DATA

DATA CHECKOUT RUN:              NO
DATA SET LOCATED ON UNIT NO.:    2
THIS UNIT TO BE REWOUND:        NO
NO. OF DATA ITEMS IN DATA SET:   8
ID DATA ITEM IS DATA ITEM NO.:   1
DEP VARIABLE IS DATA ITEM NO.:   6
MDV DATA ITEM IS DATA ITEM NO.:  8

INDICES PASSED TO SUBROUTINE PRED ARE:
 7  2  3  0  0  0  0  0  0
 0  0

LABELS FOR DATA ITEMS ARE:
  ID    TIME     AMT      WT    APGR      CP    EVID     MDV

FORMAT FOR DATA IS:
(7F7.0,1X,F1.0)

TOT. NO. OF DATA RECS:    744
TOT. NO. OF OBS RECS:     155
TOT. NO. OF INDIVIDUALS:   59

LENGTH OF THETA:  3

OMEGA HAS SIMPLE DIAGONAL FORM WITH DIMENSION:  2

SIGMA HAS SIMPLE DIAGONAL FORM WITH DIMENSION:  1

INITIAL ESTIMATE OF THETA:
LOWER BOUND    INITIAL EST    UPPER BOUND
 0.0000E+00     0.4700E-02     0.1000E+07
 0.0000E+00     0.9900E+00     0.1000E+07
 0.0000E+00     0.1000E+01     0.1000E+07

INITIAL ESTIMATE OF OMEGA:
0.5000E-01
0.0000E+00   0.3000E-01

INITIAL ESTIMATE OF SIGMA:
0.2000E-01

ESTIMATION STEP OMITTED:           NO
NO. OF FUNCT. EVALS. ALLOWED:     500
NO. OF SIG. FIGURES REQUIRED:       3
INTERMEDIATE PRINTOUT:            YES
MSF OUTPUT:                        NO

COVARIANCE STEP OMITTED:    NO
EIGENVLS. PRINTED:    NO
SPECIAL COMPUTATION:  NO

TABLES STEP OMITTED:    NO
NO. OF TABLES:       1
TABLES PRINTED:    YES

USER-CHOSEN DATA ITEMS FOR TABLE  1,
IN THE ORDER THEY WILL APPEAR IN THE TABLE, ARE:
  ID    TIME     AMT      WT    APGR

SCATTERPLOT STEP OMITTED:    NO
NO. OF PAIRS OF ITEMS GENERATING
        FAMILIES OF SCATTERPLOTS:  7

ITEMS TO BE SCATTERED ARE:    PRED      CP
    UNIT SLOPE LINE INCLUDED
ITEMS TO BE SCATTERED ARE:    PRED    RES
ITEMS TO BE SCATTERED ARE:      WT    RES
ITEMS TO BE SCATTERED ARE:    APGR    RES
ITEMS TO BE SCATTERED ARE:    PRED    WRES
ITEMS TO BE SCATTERED ARE:      WT    WRES
ITEMS TO BE SCATTERED ARE:    APGR    WRES

Figure_19 PREDPP problem summary for phenobarb population data

DOUBLE PRECISION PREDPP   VERSION III LEVEL 1.0

ONE COMPARTMENT MODEL (ADVAN1)

MAXIMUM NO. OF BASIC PK PARAMETERS:   2

BASIC PK PARAMETERS (AFTER TRANSLATION):
  ELIMINATION RATE (K) IS BASIC PK PARAMETER NO.:  1

TRANSLATOR WILL CONVERT PARAMETERS CLEARANCE (CL) AND VOLUME (V) TO K (TRANS2)

COMPARTMENT ATTRIBUTES
COMPT. NO.   FUNCTION   INITIAL    ON/OFF      DOSE      DEFAULT    DEFAULT
                        STATUS     ALLOWED    ALLOWED    FOR DOSE   FOR OBS.
   1         CENTRAL      ON         NO         YES        YES        YES
   2         OUTPUT       OFF        YES        NO         NO         NO

ADDITIONAL PK PARAMETERS - ASSIGNMENT OF ROWS IN GG COMPT. NO. INDICES SCALE BIOAVAIL. ZERO-ORDER ZERO-ORDER ABSORB FRACTION RATE DURATION LAG 1 3 * * * * 2 * - - - - - PARAMETER IS NOT ALLOWED FOR THIS MODEL * PARAMETER IS NOT SUPPLIED BY PK SUBROUTINE; WILL DEFAULT TO ONE IF APPLICABLE

DATA ITEM INDICES USED BY PRED ARE: EVENT ID DATA ITEM IS DATA ITEM NO.: 7 TIME DATA ITEM IS DATA ITEM NO.: 2 DOSE AMOUNT DATA ITEM IS DATA ITEM NO.: 3

PK SUBROUTINE CALLED ONCE PER INDIVIDUAL RECORD. PK SUBROUTINE NOT CALLED AT ADDITIONAL DOSE OR LAGGED DOSE TIMES.

ERROR SUBROUTINE CALLED WITH EVERY EVENT RECORD.

Figure_20 Control stream for phenobarb population data: posthoc eta’s displayed

FILE    FILESTREAM
PROB    PHENOBARB POPULATION DATA
DATA       1   0   0   8
ITEM       1   6   8  11   1
INDX       7   2   3
LABL      ID    TIME     AMT      WT    APGR      CP    EVID     MDV
FORM
(7F7.0,1X,F1.0)
STRC       3   2   1           1   0   1
THCN       1
THTA       .0047     .99     1.0
LOWR           0       0       0
UPPR    +1000000+1000000+1000000
DIAG    .05     .03
DIAG    .02
ESTM       0 500   3   5               1
COVR       0
TABL       0   1
TABL       7   1   0   2   0   3   0   4   0   5   0  12   0  13   0
SCAT       0   7
SCAT       9   6   0   0   0   1
SCAT       9  10
SCAT       9  11
SCAT       4  12
SCAT       5  12
SCAT       4  13
SCAT       5  13

Figure_21 NM-TRAN control stream for phenobarb population data: posthoc eta’s displayed

$PROB    PHENOBARB POPULATION DATA
$DATA  DATA2  (6F7.0)
$INPUT  ID TIME AMT WT APGR CP=DV
$SUBROUTINES ADVAN1 TRANS2
$PK
;CLEARANCE AND VOLUME PROPORTIONAL TO WEIGHT
;PROPORTIONALITY CONSTANT FOR VOLUME DEPENDS ON APGAR
      CALLFL=1
      CL=THETA(1)*WT*EXP(ETA(1))
      TVVD=THETA(2)*WT
      IF (APGR.LE.2) TVVD=THETA(3)*TVVD
      V=TVVD*EXP(ETA(2))
      S1=V
$ERROR
      Y=F*EXP(EPS(1))
$THETA   (0,.0047)  (0,.99)  (0,1.0)
$OMEGA  .05  .03
$SIGMA  .02
$ESTIM   MAXEVAL=500   PRINT=5   POSTHOC
$COVAR
$TABLE  ID TIME AMT WT APGR ETA1 ETA2
$SCAT  CP VS PRED   UNIT
$SCAT  RES VS PRED
$SCAT  WRES VS PRED
$SCAT  ETA1 VS WT
$SCAT  ETA1 VS APGR
$SCAT  ETA2 VS WT
$SCAT  ETA2 VS APGR

Figure_22 Control stream for phenobarb population data: using a mixture model

FILE    FILESTREAM
PROB    PHENOBARB POPULATION DATA    MIXTURE MODEL
DATA       1   0   0   8
ITEM       1   6   8  11   1                       1
INDX       7   2   3
LABL      ID    TIME     AMT      WT    APGR      CP    EVID     MDV     EST
FORM
(7F7.0,1X,F1.0)
STRC       5   4   1           0   1   1
STRC       2   2
THCN       1
THTA       .0047     1.0     .99     1.0     .5
LOWR           0       0       0       0      0
UPPR    +1000000+1000000+1000000+1000000    1.0
BLST    .05     .01     .03
DIAG    .02
ESTM       0 500   3   5
SCAT       0   8
SCAT       9   6   0   0   0   1
SCAT       9  10
SCAT       4  10
SCAT       5  10
SCAT       9  11
SCAT       4  11
SCAT       5  11
SCAT       4  12

Figure_23 NM-TRAN control stream for phenobarb population data: using a mixture model

$PROB    PHENOBARB POPULATION DATA    MIXTURE MODEL
$DATA  DATA2 (6F7.0)
$INPUT  ID TIME AMT WT APGR CP=DV
$SUBROUTINES ADVAN1 TRANS2 MIX=mix
$PK
       CALLFL=1
       EST=MIXEST
       CL1=THETA(1)*EXP(ETA(1))
       V1=THETA(3)*EXP(ETA(2))
       CL2=THETA(2)*THETA(1)*EXP(ETA(3))
       V2=THETA(4)*THETA(3)*EXP(ETA(4))
       Q=1
       IF (MIXNUM.EQ.2) Q=0
       CL=Q*CL1+(1-Q)*CL2
       V=Q*V1+(1-Q)*V2
       S1=V
$ERROR
      Y=F*EXP(EPS(1))
$THETA  (0,.0047)  (0,1)  (0,.99)  (0,1)  (0,.5,1)
$OMEGA  BLOCK(2) .05  .01  .03
$OMEGA  BLOCK(2) SAME
$SIGMA  .02
$ESTM   MAXEVAL=500   PRINT=5
$SCAT  CP VS PRED   UNIT
$SCAT  RES VS PRED
$SCAT  RES VS WT
$SCAT  RES VS APGR
$SCAT  WRES VS PRED
$SCAT  WRES VS WT
$SCAT  WRES VS APGR
$SCAT  EST VS WT

Figure_24 Scatterplot of mixture subpopulation versus weight

See figure in file fig24.pdf

Figure_25 Control stream of single-subject data

FILE    NULL
PROB    THEOPHYLLINE   SINGLE SUBJECT DATA
DATA       0   0  11   6
ITEM       6   3   5  11   1
INDX       4   2   1
LABL    DOSE    TIME      CP    EVID     MDV      ID
FORM
(4F7.0,1X,F1.0,1X,F2.0)
    320    .0              1 1  1
           .27   1.71      0 0  1
           .52   7.91      0 0  2
          1.     8.31      0 0  3
          1.92   8.33      0 0  4
          3.5    6.85      0 0  5
          5.02   6.08      0 0  6
          7.03   5.4       0 0  7
          9.     4.55      0 0  8
         12.     3.01      0 0  9
         24.3     .90      0 0 10
STRC       3   1   0           1
THCN       1
THTA         1.7    .102     29.
LOWR          0.      0.      0.
UPPR    +1000000+1000000+1000000
DIAG   2
ESTM       0 240   3   2
COVR       0   0   0   0   1
TABL       0   1
TABL       1   2
SCAT       0   4
SCAT       2   3
SCAT       2   7
SCAT       2   8
SCAT       3   7   0   0   0   1

Figure_26 NM-TRAN control stream of single-subject data

$PROBLEM  THEOPHYLLINE   SINGLE SUBJECT DATA
$INPUT  DOSE=AMT TIME CP=DV
$DATA  DATA3  (3F7.0)
$SUBROUTINES  ADVAN2

$PK
CALLFL=1
KA=THETA(1)
K=THETA(2)
SC=THETA(3)

$ERROR
Y=F+ERR(1)

$THETA  (0,1.7)  (0,.102)  (0,29)

$ESTIMATION  MAXEVAL=240  PRINT=2
$COVR
$TABLE TIME
$SCAT    CP VS TIME
$SCAT    PRED VS TIME
$SCAT    RES VS TIME
$SCAT    PRED VS CP  UNIT

Figure_27 NONMEM problem summary for single-subject data

NONLINEAR MIXED EFFECTS MODEL PROGRAM (NONMEM)    DOUBLE PRECISION NONMEM    VERSION IV LEVEL 1.0
DEVELOPED AND PROGRAMMED BY STUART BEAL AND LEWIS SHEINER

PROBLEM NO.  1
THEOPHYLLINE   SINGLE SUBJECT DATA

DATA CHECKOUT RUN:              NO
NO. OF DATA RECS IN DATA SET:   11
NO. OF DATA ITEMS IN DATA SET:   6
ID DATA ITEM IS DATA ITEM NO.:   6
DEP VARIABLE IS DATA ITEM NO.:   3
MDV DATA ITEM IS DATA ITEM NO.:  5

INDICES PASSED TO SUBROUTINE PRED ARE:
 4  2  1  0  0  0  0  0  0
 0  0

LABELS FOR DATA ITEMS ARE:
DOSE    TIME      CP    EVID     MDV      ID

FORMAT FOR DATA IS:
(4F7.0,1X,F1.0,1X,F2.0)

TOT. NO. OF OBS RECS:      10
TOT. NO. OF INDIVIDUALS:   10

LENGTH OF THETA:  3

OMEGA HAS SIMPLE DIAGONAL FORM WITH DIMENSION:  1

INITIAL ESTIMATE OF THETA:
LOWER BOUND    INITIAL EST    UPPER BOUND
 0.0000E+00     0.1700E+01     0.1000E+07
 0.0000E+00     0.1020E+00     0.1000E+07
 0.0000E+00     0.2900E+02     0.1000E+07

ESTIMATION STEP OMITTED:           NO
NO. OF FUNCT. EVALS. ALLOWED:     240
NO. OF SIG. FIGURES REQUIRED:       3
INTERMEDIATE PRINTOUT:            YES
MSF OUTPUT:                        NO

COVARIANCE STEP OMITTED:    NO
EIGENVLS. PRINTED:    NO
SPECIAL COMPUTATION: YES

TABLES STEP OMITTED:    NO
NO. OF TABLES:       1
TABLES PRINTED:    YES

USER-CHOSEN DATA ITEMS FOR TABLE  1,
IN THE ORDER THEY WILL APPEAR IN THE TABLE, ARE:
TIME

SCATTERPLOT STEP OMITTED:    NO
NO. OF PAIRS OF ITEMS GENERATING
        FAMILIES OF SCATTERPLOTS:  4

ITEMS TO BE SCATTERED ARE:    TIME      CP
ITEMS TO BE SCATTERED ARE:    TIME    PRED
ITEMS TO BE SCATTERED ARE:    TIME    RES
ITEMS TO BE SCATTERED ARE:      CP    PRED
    UNIT SLOPE LINE INCLUDED

Figure_28 PREDPP problem summary for single-subject data

DOUBLE PRECISION PREDPP   VERSION III LEVEL 1.0

ONE COMPARTMENT MODEL WITH FIRST-ORDER ABSORPTION (ADVAN2)

MAXIMUM NO. OF BASIC PK PARAMETERS:   3

BASIC PK PARAMETERS (AFTER TRANSLATION):
  ELIMINATION RATE (K) IS BASIC PK PARAMETER NO.:  1
  ABSORPTION RATE (KA) IS BASIC PK PARAMETER NO.:  3

COMPARTMENT ATTRIBUTES
COMPT. NO.   FUNCTION   INITIAL    ON/OFF      DOSE      DEFAULT    DEFAULT
                        STATUS     ALLOWED    ALLOWED    FOR DOSE   FOR OBS.
   1         DEPOT        OFF        YES        YES        YES        NO
   2         CENTRAL      ON         NO         YES        NO         YES
   3         OUTPUT       OFF        YES        NO         NO         NO

ADDITIONAL PK PARAMETERS - ASSIGNMENT OF ROWS IN GG COMPT. NO. INDICES SCALE BIOAVAIL. ZERO-ORDER ZERO-ORDER ABSORB FRACTION RATE DURATION LAG 1 * * * * * 2 4 * * * * 3 * - - - - - PARAMETER IS NOT ALLOWED FOR THIS MODEL * PARAMETER IS NOT SUPPLIED BY PK SUBROUTINE; WILL DEFAULT TO ONE IF APPLICABLE

DATA ITEM INDICES USED BY PRED ARE: EVENT ID DATA ITEM IS DATA ITEM NO.: 4 TIME DATA ITEM IS DATA ITEM NO.: 2 DOSE AMOUNT DATA ITEM IS DATA ITEM NO.: 1

PK SUBROUTINE CALLED ONCE PER INDIVIDUAL RECORD. PK SUBROUTINE NOT CALLED AT ADDITIONAL DOSE OR LAGGED DOSE TIMES.

DURING SIMULATION, ERROR SUBROUTINE CALLED WITH EVERY EVENT RECORD. OTHERWISE, ERROR SUBROUTINE CALLED ONCE IN THIS PROBLEM.

Figure_29 Control stream of single-subject PD data

FILE    NULL
PROB    THEOPHYLLINE   SINGLE SUBJECT DATA  PHARMACODYNAMICS
DATA       0   0  11   6
ITEM       6   3   5  11   1
INDX       4   2   1
LABL    DOSE    TIME     EFF    EVID     MDV      ID
FORM
(4F7.0,1X,F1.0,1X,F2.0)
    320    .0              1 1  1
           .27   .094      0 0  1
           .52   .163      0 0  2
          1.     .317      0 0  3
          1.92   .544      0 0  4
          3.5    .689      0 0  5
          5.02   .473      0 0  6
          7.03   .733      0 0  7
          9.     .667      0 0  8
         12.     .327      0 0  9
         24.3    .151      0 0 10
STRC       3   1   0           1
THCN       1
THTA          1.      1.      5.
LOWR          0.      0.      0.
UPPR    +1000000+1000000+1000000
DIAG   2
ESTM       0 240   3   2
COVR       0   0   0   0   1
TABL       0   1
TABL       1   2
SCAT       0   4
SCAT       2   3
SCAT       2   7
SCAT       2   8
SCAT       3   7   0   0   0   1

Figure_30 NM-TRAN control stream of single-subject PD data

$PROBLEM  THEOPHYLLINE   SINGLE SUBJECT DATA  PHARMACODYNAMICS
$INPUT  DOSE=AMT TIME EFF=DV
$DATA  DATA4  (3F7.0)
$SUBROUTINES  ADVAN7
$MODEL COMP=(DEPOT,DEFDOSE)  COMP=(CENTRAL)  COMP=(EFFECT,DEFOBS)

$PK
CALLFL=1
K12=1.94
K20=.102
K23=.001*K20
K30=THETA(1)
VD=32
S3=VD*K23/K30

$ERROR
EMAX=THETA(2)
C50=THETA(3)
E=EMAX*F/(F+C50)
Y=E*(1+ETA(1))

$THETA  (0,1)  (0,1)  (0,5)

$ESTIMATION  MAXEVALS=240   PRINT=2
$COVR
$TABLE TIME
$SCAT    EFF VS TIME
$SCAT    PRED VS TIME
$SCAT    RES VS TIME
$SCAT    PRED VS EFF  UNIT

Figure_31 Control stream of single-subject PD data: ERROR-defined items displayed

FILE    NULL
PROB    THEOPHYLLINE   SINGLE SUBJECT DATA  PHARMACODYNAMICS
DATA       0   0  11   6
ITEM       6   3   5  11   1   0   0   0   0   0   2
INDX       4   2   1
LABL    DOSE    TIME     EFF    EVID     MDV      ID      CP      CE
FORM
(4F7.0,1X,F1.0,1X,F2.0)
    320    .0              1 1  1
           .27   .094      0 0  1
           .52   .163      0 0  2
          1.     .317      0 0  3
          1.92   .544      0 0  4
          3.5    .689      0 0  5
          5.02   .473      0 0  6
          7.03   .733      0 0  7
          9.     .667      0 0  8
         12.     .327      0 0  9
         24.3    .151      0 0 10
STRC       3   1   0           1
THCN       1
THTA          1.      1.      5.
LOWR          0.      0.      0.
UPPR    +1000000+1000000+1000000
DIAG   2
ESTM       0 240   3   2
COVR       0   0   0   0   1
TABL       0   1
TABL       3   2   0  10   0  11   0
SCAT       0   8
SCAT       2   3
SCAT       2   7
SCAT       2   8
SCAT       3   7   0   0   0   1
SCAT      11   7
SCAT      10  11
SCAT       2  10
SCAT       2  11

Figure_32 NM-TRAN control stream of single-subject PD data: ERROR-defined items displayed

$PROBLEM  THEOPHYLLINE   SINGLE SUBJECT DATA  PHARMACODYNAMICS
$INPUT  DOSE=AMT TIME EFF=DV
$DATA  DATA4  (3F7.0)
$SUBROUTINES  ADVAN7
$MODEL COMP=(DEPOT,DEFDOSE)  COMP=(CENTRAL)  COMP=(EFFECT,DEFOBS)

$PK
CALLFL=1
K12=1.94
K20=.102
K23=.001*K20
K30=THETA(1)
VD=32
S3=VD*K23/K30

$ERROR
CP=A(2)/VD
CE=F
EMAX=THETA(2)
C50=THETA(3)
E=EMAX*F/(F+C50)
Y=E*(1+ETA(1))

$THETA  (0,1)  (0,1)  (0,5)

$ESTIMATION  MAXEVALS=240   PRINT=2
$COVR
$TABLE TIME CP CE
$SCAT    EFF VS TIME
$SCAT    PRED VS TIME
$SCAT    RES VS TIME
$SCAT    PRED VS EFF  UNIT
$SCAT    PRED VS CE
$SCAT    CE VS CP
$SCAT    CP VS TIME
$SCAT    CE VS TIME

Figure_33 Scatterplot of prediction versus effect-compt. concentration

See figure in file fig33.pdf

Figure_34 Scatterplot of effect-compt. concentration versus plasma concentration

See figure in file fig34.pdf

Figure_35 Scatterplot of plasma concentration versus time

See figure in file fig35.pdf

Figure_36 Scatterplot of effect concentration versus time

See figure in file fig36.pdf

Figure_37 INFN subroutine for computing linearly interpolated values

C INFN ROUTINE FOR COMPUTING LINEARLY INTERPOLATED VALUES
C OF AN INDEPENDENT VARIABLE.    ILUSTRATES USE OF ROUTINE PASS.
C ASSUMES THERE ARE ALWAYS AT LEAST TWO MEASURED VALUES PER INDIV. REC.
C DATREC(3)=TIME DATA ITEM
C DATREC(4)=INDEPENDENT VARIABLE DATA ITEM
C DATREC(5)=MISSING INDEPENDENT VARIABLE DATA ITEM
C   =0 INDEP VAR NOT MISSING
C   =1 IF FIRST DATA RECORD OF INDIVIDUAL RECORD IS MISSING INDEP VAR
C   =3 IF LAST  DATA RECORD OF INDIVIDUAL RECORD IS MISSING INDEP VAR
C   =2 OTHERWISE
C
      SUBROUTINE INFN (ICALL,THETA,DATREC,INDXS,NEWIND)
      DIMENSION THETA(*),DATREC(*),INDXS(*)
      DOUBLE PRECISION THETA
      DIMENSION U(1000),V(1000)
      IF (ICALL.EQ.3) RETURN
      I=0
C INITIALIZE PASS
      MODE=0
      CALL PASS (MODE)
      MODE=2
C PASS THROUGH DATA
    5 CALL PASS (MODE)
      IF (MODE.EQ.0) GO TO 10
C IF INDEP VAR IS PRESENT, STORE TIME AND VALUE
      IF (DATREC(5).EQ.0.) THEN
         I=I+1
         U(I)=DATREC(3)
         V(I)=DATREC(4)
      ENDIF
      GO TO 5
   10 I=0
C INITIALIZE PASS A SECOND TIME
      MODE=0
      CALL PASS (MODE)
      MODE=2
C PASS THROUGH DATA A SECOND TIME
   15 CALL PASS (MODE)
      IF (MODE.EQ.0) RETURN
C IF INDEP VAR IS MISSING, STORE INTERPOLATED VALUE
      IF (DATREC(5).EQ.0.) THEN
         I=I+1
      ELSE
         IF (DATREC(5).EQ.1) THEN
            K=I+1
            L=I+2
         ELSEIF (DATREC(5).EQ.2.) THEN
            K=I
            L=I+1
         ELSEIF (DATREC(5).EQ.3.) THEN
            K=I-1
            L=I
         ENDIF
         A=(U(K)*V(L)+U(L)*V(K))/(U(K)-U(L))
         B=(V(K)-V(L))/(U(K)-U(L))
         DATREC(4)=A+B*DATREC(3)
      ENDIF
      GO TO 15
      END

Figure_38 MODEL subroutine for 1-compt. linear model with 1st-order absorption

C DEFINES A 1 COMPARTMENT LINEAR MODEL WITH FIRST-ORDER ABSORPTION
C COMPT1: DRUG DEPOT   COMPT2: CENTRAL COMPT
C
      SUBROUTINE MODEL (IDNO,NCM,NPAR,IR,IATT,LINK)
      DIMENSION IATT(IR,*),LINK(IR,*)
      INTEGER MOD(2,7)
      DATA MOD/
C INITIAL STATUS: OFF ON
     X 0,1,
C ON/OFF ALLOWED: YES NO
     X 1,0,
C DOSE ALLOWED: YES YES
     X 1,1,
C DEFAULT FOR OBSERVATIONS: NO YES
     X 0,1,
C DEFAULT FOR DOSES: YES NO
     X 1,0,
C FUNCTION (HIGH ORDER)
     X 4HDEPO,4HCENT,
C FUNCTION (LOW ORDER)
     X 4HT   ,4HRAL /
      IDNO=1
      NCM=2
      NPAR=3
      DO 10 J=1,7
      DO 10 I=1,NCM
   10 IATT(I,J)=MOD(I,J)
C SET LINK:
C K20 (KE)
      LINK(2,3)=1
C K12 (KA)
      LINK(1,2)=3
      RETURN
      END

Figure_39 MODEL subroutine for single-subject PD data

C DEFINES A 3 COMPARTMENT MODEL
C COMPT1: DRUG DEPOT   COMPT2: CENTRAL COMPT   COMPT3: EFFECT COMPT
C
      SUBROUTINE MODEL (IDNO,NCM,NPAR,IR,IATT,LINK)
      DIMENSION IATT(IR,*),LINK(IR,*)
      INTEGER MOD(3,7)
      DATA MOD/
C INITIAL STATUS: ON ON ON
     X 1,1,1,
C ON/OFF ALLOWED: NO NO NO
     X 0,0,0,
C DOSE ALLOWED: YES NO NO
     X 1,0,0,
C DEFAULT FOR OBSERVATIONS: NO NO YES
     X 0,0,1,
C DEFAULT FOR DOSES: YES NO NO
     X 1,0,0,
C FUNCTION (HIGH ORDER)
     X 4HDEPO,4HCENT,4HEFFE,
C FUNCTION (LOW ORDER)
     X 4HT   ,4HRAL ,4HCT  /
      NCM=3
      NPAR=4
      DO 10 J=1,7
      DO 10 I=1,NCM
   10 IATT(I,J)=MOD(I,J)
C SET LINK:
C K12
      LINK(1,2)=1
C K20
      LINK(2,4)=2
C K23
      LINK(2,3)=3
C K30 (KEO)
      LINK(3,4)=4
      RETURN
      END

Figure_40 DES subroutine for 1-compt. linear model with 1st-order absorption

C DES FOR A 1 COMPARTMENT LINEAR MODEL WITH FIRST-ORDER ABSORPTION
C
      SUBROUTINE DES (A,P,T,DADT,IR,DA,DP)
      DIMENSION A(*),P(*),DADT(*),DA(IR,*),DP(IR,*)
      DOUBLE PRECISION A,P,T,DADT,DA,DP
C EQUATIONS FOR ABSORPTION COMPARTMENT
      DADT(1)=-P(3)*A(1)
      DA(1,1)=-P(3)
      DP(1,3)=-A(1)
C EQUATIONS FOR CENTRAL COMPARTMENT
      DADT(2)= P(3)*A(1)-P(1)*A(2)
      DA(2,1)= P(3)
      DA(2,2)=-P(1)
      DP(2,1)=-A(2)
      DP(2,3)= A(1)
      RETURN
      END

Figure_41 TOL subroutine

      SUBROUTINE TOL (NRD)
      DIMENSION NRD(*)
      NRD(1)=4
      RETURN
      END

Figure_42 AES subroutine

C AES FOR COMPARTMENT (3) IN EQUILLIBRIUM WITH COMPARTMENT (2)
C
      SUBROUTINE AES (INIT,A,P,T,E,IR,DA,DP,DT)
      DIMENSION A(*),P(*),E(*),DA(IR,*),DP(IR,*),DT(*)
      DOUBLE PRECISION A,P,T,E,DA,DP,DT
      IF (INIT.EQ.1) THEN
C SOLUTION FOR EQUILLIBRIUM COMPARTMENT
         A(3)=P(4)*A(2)
      ELSE
C EQUATIONS FOR EQUILLIBRIUM COMPARTMEMT
         E(3)=A(3)-P(4)*A(2)
         DA(3,2)=-P(4)
         DA(3,3)=1.
         DP(3,3)=-A(2)
      ENDIF
      RETURN
      END

Figure_43 MODEL subroutine for use with the AES subroutine

C DEFINES A 1 COMPARTMENT MODEL WITH DRUG DEPOT COMPARTMENT
C AND COMPARTMENT IN EQUILLIBRIUM WITH CENTRAL COMPARTMENT
C COMPT1: DRUG DEPOT   COMPT2: CENTRAL COMPT   COMPT3: EQUIL COMPT
C
      SUBROUTINE MODEL (IDNO,NCM,NPAR,IR,IATT,LINK)
      DIMENSION IATT(IR,*),LINK(IR,*)
      INTEGER MOD(3,7)
      DATA MOD/
C INITIAL STATUS: OFF, ON, ON
     X 0,1,1,
C ON/OFF ALLOWED: YES, NO, NO
     X 1,0,0,
C DOSE ALLOWED: YES, YES, NO
     X 1,1,0,
C DEFAULT FOR OBSERVATIONS: NO, YES, NO
     X 0,1,0,
C DEFAULT FOR DOSES: YES, NO, NO
     X 1,0,0,
C FUNCTION (HIGH ORDER)
     X 4HDEPO,4HCENT,4HEQUI,
C FUNCTION (LOW ORDER)
     X 4HT   ,4HRAL ,LBRM
C EQUILIBRIUM COMPT: NO, NO, YES
     X 0,0,1
C AMOUNT EXCLUDED FROM SYSTEM INTERIOR: NO, NO, NO
     X 0,0,0/
      IDNO=2
      NCM=3
      NPAR=4
      DO 10 J=1,9
      DO 10 I=1,NCM
   10 IATT(I,J)=MOD(I,J)
      RETURN
      END

TOP
TABLE OF CONTENTS